Category Archives: stuff

What makes an intelligent campus?

campus
Image by 小亭 江 from Pixabay

I often, well sometimes, I got asked what is the difference between a smart campus, and an intelligent campus.

A dumb campus is merely a series of spaces and buildings. For example the heating comes on at 8am, off at 5pm, and is only switched on between November and March, regardless of the external temperature.

A smart campus, uses data from the spaces and buildings to make decisions. For example, a thermostat controls the heating, as the room warms up, the heating turns off.

An intelligent campus, uses data from across the organisation to make decisions and make predictions. For example, a team is out on an away day, so the intelligent campus, switches off the heating and lighting on that floor for that day.

Now onto the detail…

The smart campus is already here; the technology, sensors and data analysis capability are all available, but it isn’t all joined up and so has limited scope in terms of what we can learn and how we can use the knowledge.

What we need now is the intelligent campus, where data from the physical, digital, and online environments can be combined and analysed, opening up vast possibilities for more effective use of learning and non-learning spaces.

But before we head down that road, it is useful to reflect on what we mean by a campus.

Universities across the UK are a diverse mix of traditional campus-based institutions, city-based universities where the estate is mixed in between retail, office and housing, and multi-site universities, with geographically spread campuses.

But they all have many features in common. There are formal teaching spaces, including classrooms, lecture theatres and labs. There are informal learning spaces, where learners can learn when they want to, including computer labs and the library.

There are also a whole host of social spaces such as cafeterias and dining halls, sports facilities, concert halls, common rooms, and student accommodation. Then there is the work space you need to run the institution, from the finance office to the server rooms, and there may also be green spaces, parking areas and business parks.

The non-smart or “dumb” campus is one where information on how physical infrastructure and space is being used, and what it is being used for, is rarely noted, and even more rarely acted upon. Any room utilisation surveys will be carried out by people with clipboards noting the number of people in each room, but probably not considering their activities. It would be really hard to work out how many people were in the building, even more challenging when there are multiple entrances and exits. In the non-smart campus heating comes on at 8am, and is only on between November and March, regardless of the external temperature. There are physical switches for the lighting system. Timetabling will dictate which cohort has to be where and when, and what subject they are doing. But often that is planned a year ahead and won’t take account of the kinds of teaching and learning that may be undertaken in any given slot, or whether the cohort changes size.

The non-smart campus can be inefficient, costly, and impact negatively on the student experience.

In many ways the smart campus is already here. Most new buildings built on the university campus will have an element of smartness about them.

There is some technology already in place which can start us on the road to making better-informed decisions about how best to use space, sensors, for example. We all know when lighting is linked to a movement sensor because everything goes dark when we sit still for too long, promoting much frantic arm-waving to turn the lights back on. The data from these sensors can tell us a lot about occupancy, as well as saving electricity costs.

But the smart campus goes further than such simple actions and allows us to gather data about the spaces and, importantly, act on that data. We can turn down heating in rooms which aren’t being used, and the system will take into account the actual external temperature and not just the time of year. We can use electronic entry systems, such as swipe cards, to ensure the security of the rooms, but also to measure room occupancy. We can also ensure that the lighting, heating and CO2 levels are within defined parameters.

Timetabling and curriculum planning, gives us an insight into when students could be on campus (not saying they will miss lectures, but you and I know this happens), adding in attendance data (if used) can enhance that picture. Bring in retail date from the coffee places and the shops. Data on bus tickets and car parking will also be an useful indicator of visitors to the campus.

Throw in library data, PC bookings and book issues.

Then there is network data, how busy is the network, how many devices are connected. Top end wireless networks can also help with occupancy based on connections to different wireless endpoints.

Even energy costs will add some useful insights into the use of the campus.

So what is the difference between a smart campus and an intelligent campus?

There are some key considerations when we come to looking at what makes an intelligent campus – the first is the aggregation and analysis of different kinds of data.

One of the noticeable attributes of a smart campus is that data is often siloed and isolated, and analysis and decision-making is based on a single data set.

An intelligent campus will take data from a range of sources, not just the physical aspects of the campus and how they are being used, but also the data from digital systems such as attendance records, the virtual learning environment, the library, student records, electronic point-of-sale and online services.

This joined-up approach can provide insights into the student experience that we would otherwise miss. These insights can inform and support decision-making by individuals across the campus, including students, academic and professional service staff. By using live and dynamic data, decisions can be made that are based on the current state of the campus. Here are some examples:

A student using an app on their smartphone can decide very quickly if they should visit the library that day as the app is indicating that the library is very busy, but it also informs the student that the noise levels in the coffee shop on the other side of campus are low, making it a possible option for study.

A lecturer decides on various group activities in a classroom, the room system having checked the module information and activity parameters, and set the heating and lighting to the optimal level for the activity, while also considering the preferences of the particular cohort of students.

A member of the finance team finds out from an app on their computer, based on data from previous visits, that the cafeteria is running low on the vegetarian special that day, so they can decide to leave now for lunch, so as not to miss their favourite meal.

The next level of the intelligent campus is to move beyond using this live data to add a machine learning or artificial intelligence element to the analysis, providing further insights. Bringing in historical data, feedback, and evaluative data, we can start to add a level of predictive analytics that will allow students and staff to make informed decisions on what is likely to happen.

Predicting when the library will be most busy and noisy, for example, will allow students to choose whether to come to campus before or after peak times, and will reduce the probability that the library will be too full for comfort at any one time.

An intelligent timetabling system could start to reflect on the sort of activity likely during a particular study module, not just on the number of students taking part, so the group activity could be shifted to an optimal room, rather than sticking rigidly to the same space.

By analysing when and how rooms are used, organisations will be able to make smarter, more effective use of learning spaces and other facilities across campus and to improve curriculum design and delivery.

But could this dream become a reality? Learning analytics services rely on a hub where academic and engagement data is collected, stored and processed. What if we, as a sector, could extend the learning data hub to enable data to be gathered in from physical places? How would we collect that data and what smart campus technologies would we need to have?

Making timely interventions to ensure that the best available spaces are being used for each session will enable students to learn more effectively and ensure that the organisation is running efficiently. Insights into utilisation of space, services, and resources, will enable universities to enhance the student experience.

Though much is being done in this space, the work has been focused on the relationship between the physical estate and the IT infrastructure coming together. The reality is that a university campus is awash with data from many different systems. A truly smart campus needs to bring that altogether, and an intelligent campus will enable deeper and more useful insights. Longer-term the possibilities for the intelligent campus are practically limitless.

e-Learning Stuff: Top Ten Blog Posts 2023

coffee
Image by David Schwarzenberg from Pixabay

This year I have written 89 posts on the blog. There were 92 posts in 2022, 113 blog posts in 2021. In 2020 I had written 94 blog posts. In 2019 I had written 52 blog posts which was up from 2018 when I only wrote 17 blog posts.

I decided when I got my new role in March 2019 that I would publish a weekly blog post about my week. I did this all across 2023 as well which added to the number of posts. I did once get asked if these week notes were popular, not really, but they are much more for me than for others. However, for the first time in the five years I have been doing week notes, one of them has made the top ten.. Interesting how so many old posts (more than ten years old) are in the top ten. Probably means I need to write better and more interesting blog posts.

The post at number ten asked the question, Hey Siri, are you real?

A really old post from 2008 was the ninth most popular post. Full Resolution Video on the PSP. Do people still use the PSP?

The blog post at number eight in the top ten is an old post from my series on how to use a VLE.  100 ways to use a VLE – #89 Embedding a Comic Strip. This one is still popular and is about embedding comic trips from online services into the VLE.

The seventh most popular post was from 2008, and asked the question, Can I legally download a movie trailer? One of the many copyright articles that I posted some years back. Things have changed since then, one of which is better connectivity which would allow you to stream content direct into a classroom, as for the legal issues well that’s something I am a little behind on the times though in that space.

At number six was a post on freakish occurrences, “million-to-one chances happen nine times out of ten”. One of my favourite quotes from Terry Pratchett is that “million-to-one chances happen nine times out of ten”. When something awful happens, or freakish, we hear news reporters say “it was a million-to-one chance that this would happen”.

Fifth place was Ten ways to use QR Codes which was not a post about ten ways to use QR codes.

The post at number four was a week note from 2019, Student Journey – Weeknote #08 – 26th April 2019.

The third most popular post was from 2009 and asked To Retweet or not to Retweet which was a post about retweeting on the Twitter.

The post at number two was from 2015, I can do that… What does “embrace technology” mean? was from the FE Area Reviews.

The most popular post in 2023 is one of the all time popular posts, The iPad Pedagogy Wheel. Published in 2013, this was number one for many years.. I re-posted the iPad Pedagogy Wheel as I was getting asked a fair bit, “how can I use this nice shiny iPad that you have given me to support teaching and learning?”. It’s a really simple nice graphic that explores the different apps available and where they fit within Bloom’s Taxonomy. What I like about it is that you can start where you like, if you have an iPad app you like you can see how it fits into the pedagogy. Or you can work out which iPads apps fit into a pedagogical problem.

Time for another story

The sun is setting over a sports arena. In the background is some stadium covered tiered seating. In the foreground are some trees and a wire fence.
Image by 小亭 江 from Pixabay

In the world of the intelligent campus I wrote a student story to illustrate and add a personal touch of what the intelligent campus could mean for the student experience.

The bus arrived at the campus and Leda got off, she checked her app and started to walk to her first lecture. As she passed one of the campus coffee shops she was sent a notification that three of her friends from the course were in there, so she checked the time, she had the time, popped in and found her friends. Her app let her know that she had enough loyalty points for a free coffee, well why not, Leda thought to herself. She could check if there were any additional resources for the lectures today.

Dom Pates did a similar thing using ChatGPT to write a story.

As the day wore on, Marcel attended a variety of classes and workshops, each designed to challenge and inspire him. The smart campus was constantly adapting to his preferences and needs, and he felt like he was learning more in a day than he had in a week at his old university.

I have recently been using Bard for various things, so I thought I would get it to write me a story, using the same prompt that Dom used.

Write a short story in the style of speculative fiction about a university student who spends a day on a smart or intelligent campus some time in the future. Ensure that the campus is designed to address issues around sustainability and data privacy, yet is responsive to the student in a personalised (but not creepy) way. Ensure that the student is studying a course for a future-focused job, and that the campus is actually a desirable and ethically-designed environment. Make the short story go through different stages of the day, and comes to approximately 1,500 words in total. Include an ethical quandary that the central character faces during the course of their day.

This was the result.

The year is 2042. University student Anya wakes up in her dorm room, which is located in a smart campus that is designed to address issues around sustainability and data privacy. The campus uses solar panels to generate electricity, and it has a rainwater collection system that provides water for irrigation and flushing toilets. The campus also has a sophisticated data privacy system that protects students’ personal information.

Anya gets out of bed and walks over to her desk. Her computer screen lights up as she approaches, and a personalized greeting appears. The computer knows Anya’s name, her major, and her class schedule. It also knows her preferences for learning style and study environment.

Anya opens her textbook and starts reading. The computer automatically highlights the important passages and provides links to additional resources. Anya can also ask the computer questions about the material, and the computer will provide answers or generate practice problems.

After a few hours of studying, Anya takes a break. She walks over to the window and looks out at the campus. The buildings are all connected by a network of walkways and bike paths. There are solar-powered charging stations for electric vehicles, and there are even a few self-driving cars that students can use to get around.

Anya decides to go for a walk. She walks through the quad, which is filled with students studying, chatting, and playing games. She walks past the library, the student union, and the gym. She even stops by the campus coffee shop for a cup of coffee.

As Anya walks, she thinks about her future. She is studying to be a data scientist, and she knows that she will be working with a lot of personal data. She is concerned about the ethical implications of her work, and she wants to make sure that she uses data in a responsible way.

Anya arrives at her next class, which is on artificial intelligence. The professor is talking about the potential for AI to be used for good or evil. Anya thinks about the ethical quandary she is facing, and she wonders how she will use her skills to make a positive impact on the world.

After class, Anya goes back to her dorm room. She logs onto her computer and starts working on a project for her data science class. She is using a dataset of social media posts to track the spread of misinformation. She wants to find out how to identify and counter misinformation before it can cause harm.

Anya works on her project for several hours. She is exhausted, but she is also excited about the potential of her work. She knows that she is making a difference, and she is confident that she is using her skills in a way that is ethical and responsible.

Anya goes to bed, knowing that she has made a good use of her day. She is confident that she is on the right track to a future-focused job that will allow her to use her skills to make a positive impact on the world.

I think this is an interesting interpretation of the prompt. I also think that much of what is mentioned or discussed is already here, or will be here in the next five years. What will the campus of 2042 look like, I think it will be very different to this story.

It was original I tell you, it was…

laptop user
Photo by Christin Hume on Unsplash

A story of a personal perspective and recollection.

With the imminent release of AI detection tools within Turnitin, I am reminded of an incident over ten years ago after we introduced a plagiarism checker tool into the college I worked at. I was responsible for a lot of the initial training in the tool. For each training session I would create three pieces of content to be put into the tool to check for originality. One was a straight copy of something from the web, usually a blog post of mine, or wikipedia. The second was an original piece would contain (and correctly) quote third party content. For the third piece I would always create a new original piece of content.

So, there I was delivering the training and I put the first piece into the plagiarism checker tool. It straight away identified that this was copied from the web, and showed the original source.

The second piece went in, again it identified there was non-original content in the submission. However I used this piece to demonstrate the limitations of the tool, as the academic would need to check the submission themselves. They would then see that no plagiarism had taken place.

I always had to create a new piece of content for the third (original) submission so that it would be identified as original.

However one time I did this, the plagiarism checker tool, identified the third original submission has having been copied. I was astounded, as I knew I had only written it that morning.

Upon further investigation I found out what had happened. The originality report indicated that my original piece of work had been “copied” from a university website. Well I hadn’t done that I had written it that morning.

Hmmm….

Doing some more Google searching, what I found out, was that the university did indeed have some content on their website. They had in fact “lifted” it from an article I had written a few years previously.

So what had happened was that. Back in the 2000s I had written an original piece of content. The university had taken and used that content.

I in the 2010s had then written an original piece of content, well so original that it was very similar the content I had written years earlier. Obviously I based my new original writing on something I had forgotten I had written about before. 

Putting this “new” content into the plagiarism checker tool resulted in the “new” work been seen as a copy of the earlier work. The plagiarism checker tool only checked originality, so didn’t know (or realise) that the university had copied me. The plagiarism checker tool doesn’t tell you the source.

The key lesson here though was that the plagiarism checker tool was insufficient on its own. It only told part of the narrative. Further investigation was needed and further checking was required to get to the actual truth, and not the perceived truth of the plagiarism checker tool.

What does this mean? Well if your plagiarism checker tool has AI detection in, then you will need to recognise that whatever the plagiarism checker tool tells you, this isn’t the end of the story, it is only the beginning.

The other thing I learnt was that I needed to be more creative in my writing going forward…

Time for a story

Back in 2018 I wrote a story about the Intelligent Campus. Sections of the story were part of the Guide to the Intelligent Campus. I posted the whole story to the project blog, but am re-posting here as a starting point for new and different stories.

Image by Pexels from Pixabay
Image by Pexels from Pixabay

It was raining and Leda was off to her University for the day. Her phone had already sent her notification to leave for campus early as there was a lot of traffic on the roads and the buses were being delayed. She got to the bus stop earlier than usual and within a few minutes the bus arrived. On the bus, on her phone using the University App, she looked over her schedule for the day. There were lectures, a seminar and she also had a window to get to the library to find those additional books for the essay she needed to hand in next month. She was hoping to catch up with some friends over coffee. There were some notifications in the app, the seminar room had been changed, there was a high chance that the library would be busy today. Leda looked out of the window of the bus at the rain. Today was going to be a good day.

The bus arrived at the campus and Leda got off, she checked her app and started to walk to her first lecture. As she passed one of the campus coffee shops she was sent a notification that three of her friends from the course were in there, so she checked the time, she had the time, popped in and found her friends. Her app let her know that she had enough loyalty points for a free coffee, well why not, Leda thought to herself. She could check if there were any additional resources for the lectures today.

coffee
Image by David Schwarzenberg from Pixabay

As Leda drank her coffee, she reflected on why she had chosen thus university. One of the things that had attracted her was the positive reviews and feedback that had come from existing and previous students on the whole student experience. This positive view of the university had resulted in her putting in an application. She was reminded though of one of the induction sessions where the University had taken the time to discuss the whole concept of the gathering of data, the processing of that data, the what interventions were possible and the importance of consent at all three stages. She did worry about this and wondered if all appropriate mechanisms and security was in place to protect her personal data. As she finished off her coffee, she did think was all this data gathering really necessary?

Leda’s phone buzzed, she needed to be at her lecture in ten minutes, however the room was different to the one she was usually in. Leda didn’t concern herself with this, as she knew that the phone would direct her to the room quickly and efficiently. What was so great about this, Leda thought to herself, was that the sessions she attended were always in the right kind space. Sometimes her lecturer wanted to do group work and the usual lecture theatre wasn’t appropriate, so having that in a more suitable room allowed her and her friends to focus on the learning.

CCTV
Image by Stafford GREEN from Pixabay

As Leda walked around the campus she noticed that there was a lot of devices attached to ceilings and walls. She recognised the CCTV style cameras, though some looked more like speed cameras with some kind of sensor. She had also seen devices with lights in the classrooms and the lecture theatres. Leda made her way to her next session, she used the Wayfinding app on her phone as she knew due to building work on the campus, her usual route was closed. The app would give her the fastest route to get there. As she walked into her seminar room she touched her RFID enabled smartphone to the touchpad by the door. This registered her attendance, but the app recognising her location, started to download the resources for the seminar to her phone and registered her device for the polling and audience response system. Leda found the process much more transparent than being given a clicker. She liked being able to use a single device, her phone for all her smart campus interactions, rather than using a range of devices, cards and equipment to do so.

When Leda had started her degree programme she had been concerned about how data on her was being gathered, processed and acted upon. It was apparent from the start that her journey through the university, both academically and physically would be tracked. She was happy though that the University had published a guide for students on the ethical use of data. She was aware of what data she had to provide and other data about her for which she had a choice on whether it was collected or not. Leda with her friends had been looking at the open algorithms the University used and had been playing with some of them to see if there were any interesting insights into the way her and her friends interacted with the university systems and the campus.

campus
Image by 小亭 江 from Pixabay

Though Leda had concerns about her personal privacy with all the data gathering happening on campus, her and her friends had noticed a reduction in crime and vandalism. When incidents happened on campus, reaction time from the campus security officers was really fast they could get to the right place much quicker. Leda did think it was all a bit Big Brother, but did feel safer.

Leda was sitting in the library reading through the book she had borrowed, her phone buzzed with a notification, her bus home was due shortly and if she left now, she would be able to catch it. Leda really liked this as though there was a bus timetable, the realities of traffic and weather meant that the buses weren’t always on time. The bus company used GPS to identify the exact location of their buses and this data could then be used by the university app to help learners catch their buses on time. One of the reasons Leda liked this was that it was raining and it saved having to stand in the rain for too long. As Leda sat down in the bus, her phone buzzed again, as she had walked from the library to the bus stop, the phone had downloaded an interesting podcast related to the lecture she had been to ready for her to listen on the journey home.

As Leda settled down for the evening, she reflected on her day. What kind of day would have it been without her phone, without it connected to the different services on campus, the way it worked in a smart or even intelligent way. It was making her whole experience better, she could focus on her studies and spend a lot less time trying to find rooms. The university called it the intelligent campus, in Leda’s view it was more than that, it was a campus that improved the whole student experience. Well for her it did.

I am planning to update the story to reflect changes in both society and technology.

Spaces and Wellbeing

Group working
Image by StockSnap from Pixabay

Could we use space utilisation data to support wellbeing?

As students frequent and move about the campus, the spaces in which they study, learn and relax can have an impact on their wellbeing.

Student wellbeing is a key priority for the Higher Education (HE) sector. The Stepchange framework, created by Universities UK, calls on all universities to make wellbeing a strategic priority which is “foundational to all aspects of university life, for all students and all staff.”  We know, as discussed in a recent Jisc blog post, that good data governance provides the foundation to build new wellbeing support systems that can respond to the needs of students – helping more people more quickly while maximising the use of available resources.

As well as the usual suspects that universities can use to collect engagement data, such as the VLE, library systems and access to learning spaces, could universities use space utilisation data to, enhance and improve the spaces (formal and informal) on campus to deliver a better student experience and support wellbeing?

Could we use data from how spaces and when spaces are being used to deliver a better student experience and maximise student wellbeing.

Space utilisation

 Currently universities will use manual and automated methods to measure space utilisation. Often this data is used to for self-assessment reports and proposals for expansion. Few are analysing that data in real time and presenting the information to students.

We know that measuring usage of space, tables and desks can be fraught with ethical concerns. It is critical when measuring space usage that the university is transparent about what it is doing, how it is doing it and why.

group
Photo by Annie Spratt on Unsplash

The importance of space

 You can imagine the scenario when a student who is facing challenges on their course, and decides to visit the campus, expecting to find space to study, but the library is busy, the study areas are noisy and even the café is closed. This disappointment can lead to annoyance. This small negative experience could potentially impact on the wellbeing of the student. They are probably not alone, as other students (and staff) are equally frustrated and disappointed. If they had known about the current (and predicted future) utilisation of that space, they may have made different plans. They could have left earlier, or arrived later.

Using data on spaces to support wellbeing

Analysing the data on space utilisation could provide a valuable insight into ensuring that when students need space to study that space is available, and can support wellbeing.

Universities could use the data to ensure that when space is unavailable, for example for cleaning, so that this is done at the best possible time, for the minimal impact on student wellbeing.

 Space isn’t the answer

Of course, when it comes to improving student wellbeing, just having data about the spaces students use is most certainly not going to be enough. Data on how students interact with online systems and services, the resources they engage with, all provide a wealth of engagement data. We know that engagement is one measure that universities can look at to understand if there is a story behind a student’s dis-engagement with the university and work to improve that student’s wellbeing.

As Jisc’s Andrew Cormack and Jim Keane said in their recent blog post on data governance,

If their new university does not use data intelligently to improve their day-to-day experience, students could be disappointed, which reflects badly on the institution.  

Universities should reflect on all the data they collect, and decide what the data can tell them about the student experience, and importantly what interventions they need to make to positively impact on student wellbeing. Running out of coffee isn’t the end of the world, but combine many small negative impacts on the student experience, students will not be happy and wellbeing could suffer as a result.

Read Jisc’s framework and code of practice for data-supported wellbeing – which outlines how to promote ethical, effective, and legally compliant processes that help HE organisations manage risk and resources.

e-Learning Stuff: Top Ten Blog Posts 2022

old typewrite
Image by Patrik Houštecký from Pixabay

This year I have written 92 posts to the blog. There were 113 blog posts in 2021. In 2020 I had written 94 blog posts. In 2019 I had written 52 blog posts which was up from 2018 when I only wrote 17 blog posts.

I decided when I got my new role in March 2019 that I would publish a weekly blog post about my week. I did this all across 2022 as well which added to the number of posts. I did once get asked if these week notes were popular, not really, but they are much more for me than for others.

So the blog post at number ten in the top ten is an old post from my series on how to use a VLE, 100 ways to use a VLE – #89 Embedding a Comic Strip. This one is still popular and is about embedding comic trips from online services into the VLE.

The ninth most popular post was from a more recent series of mine, lost in translation, and focussed on the lecture, it was called Lost in translation: the lecture. Before having 4-5 hours in a lecture theatre or a classroom was certainly possible and done by many institutions. However merely translating that into 4 hours of Zoom video presentations and discussions is exhausting for those taking part, but also we need to remember that in this time there are huge number of other negative factors impacting on people’s wellbeing, energy and motivation. This post explored the options and possibilities that could be undertaken instead of merely translating a one hour lecture into a one hour Zoom presentation. Simply translating what we do in our physical buildings into an online remote version, is relatively simple, however it may not be effective. Thinking about what you want that learning experience to achieve and what you want the students to learn, means you can do different things. 

At number eight was some thinking I had been doing on timetables, the post was titled: The tyranny of the timetable. When you start down the road, moving from a static timetable to a smart timetable, and then onto an intelligent timetable, you start to realise that the timetable is actually a small part of the work involved. There is a whole lot of data needed to enable the timetable to make smart or intelligent decisions.

A really old post from 2008 was the seventh most popular post. It was about Full Resolution Video on the PSP. Do people still use the PSP?

Climbing to sixth place was a post on change, Steering a supertanker… It’s pretty easy to be honest.

One of my favourite quotes from Terry Pratchett is that “million-to-one chances happen nine times out of ten”. When something awful happens, or freakish, we hear news reporters say “it was a million-to-one chance that this would happen”. At number five was a post on freakish occurrences, “million-to-one chances happen nine times out of ten”

The fourth most popular post was from 2008, up two places from last year, Can I legally download a movie trailer? One of the many copyright articles that I posted some years back. Things have changed since then, one of which is better connectivity which would allow you to stream content direct into a classroom, as for the legal issues well that’s something I am a little behind on the times though in that space.

Moving from place to third was Ten ways to use QR Codes which was not a post about ten ways to use QR codes.

The second most popular post in 2021 is one of the all time popular posts, The iPad Pedagogy Wheel. Published in 2013, this was number one for many years, including last yea,r number two in 2019  and number three in 2020. I re-posted the iPad Pedagogy Wheel as I was getting asked a fair bit, “how can I use this nice shiny iPad that you have given me to support teaching and learning?”. It’s a really simple nice graphic that explores the different apps available and where they fit within Bloom’s Taxonomy. What I like about it is that you can start where you like, if you have an iPad app you like you can see how it fits into the pedagogy. Or you can work out which iPads apps fit into a pedagogical problem.

The post at number one was from 2015, I can do that… What does “embrace technology” mean? was from the FE Area Reviews.

So there we have it, the top ten posts of 2022.

Lost in translation: some thoughts

writing
Image by Pexels from Pixabay

I have over the last couple of years been working on a series of blog posts about translating existing teaching practices into online models of delivery.

One of the things I noticed as the education sector moved rapidly to remote delivery from March 2019, was the different models that people used. However what we did see a lot of was many people were translating their usual practices to an online version. 

As part of my work in looking at the challenges in delivering teaching remotely during the covid crisis period I have been reflecting on how teaching staff can translate their existing practice into new models of delivery that could result in better learning, but also have less of detrimental impact on staff an students.

The result was a series of blog posts covering a range of pedagogical and technology perspectives.

I got a lot of positive feedback on the posts and they have informed many of my presentations and other blog posts over the last two years.

Though covid has not gone away the ramifications and impact of covid and the lockdowns are still with us thirty months later.

Universities are wanting to utilise the experiences they had during the pandemic, to support the transformation of teaching, learning and assessment.

I have decided to continue with the series of blog posts and I also plan to update some of the earlier posts to reflect the current climate.

What about the croissant?

croissant

Over on my productivity and technology blog I have published a blog post on culture, strategy, breakfast and croissant.

“Culture eats strategy for breakfast” is a famous quote from management consultant and writer Peter Drucker. 

Reflecting on this quote though, I did start to think about breakfast, and wondered if I could use breakfast as an analogy for effective strategy implementation. As well as strategic objectives, what else do people need to know in order to deliver those objectives successfully.

Read more.

Transforming the television watching experience

old television
Image by Free-Photos from Pixabay

When we start talking about digital transformation, I often see people focusing on the digital aspect and expecting the transformation to follow on. Where we see true transformation, the focus is on the change and digital is enabling that change.

In a previous blog post I wrote about the changes digital had on the music industry, well a specific focus on the retail aspect. In this similar post I want to think about the impact digital has had on television and probably more importantly the ways in which we watch television.

Television has been around for a while now. The early 1950s saw an explosion of television ownership in the UK. These were analogue devices that enabled broadcast television in the home. Originally all television was live, it was the development of video tape that allowed television to be recorded in advance and broadcast later.

1998 saw the launch of digital terrestrial television in the UK with Ondigital. However digital terrestrial television really took off in the UK when Freeview was launched in October 2002. In order to view the digital signal you either needed a set top box or a television with an integrated digital tuner. This was very much a digitisation of the television.

Over the next few years we saw televisions become smarter (and flatter and larger).

Well what really transformed television wasn’t the digitisation or digitalisation of the hardware.

Remote control
Image by tookapic from Pixabay

If we separate the physical television hardware from the experience of watching television then we are now seeing the digital transformation of television watching experience.

When we look at digital transformation, it becomes obvious that focusing on the hardware or technology is actually quite limiting.

If we go through the story of television again, but rather than look at the hardware to watch television, we focus on the experience of watching television, we can start to see how digital enhanced, enabled and transformed the experience of watching television.

When television was broadcast, you had no choice but to watch what was on when it was on. Yes you had a choice of channels, but not a huge choice.

The VCR (video cassette recorder) did transform the way in which we could watch television, we could now time shift when we watched stuff, and video rental shops allowed us to watch things which weren’t on television. I do remember travelling by train on the 4th July 1990 and there was someone in our carriage watching the World Cup semi-final between Germany and England on a small portable television. It was a tiny screen, it was back and white, and every time we went through a tunnel they lost the signal. The poor bloke was also surrounded by people who also wanted to watch the game. I remember the running commentary when the match ended in penalties. The portable telebision and the VCR were both technologies that led to the transformation of the television watching experience, but this was not digital transformation of that watching experience. However this change would influence how we wanted to watch television and as there were technological changes enabled by digital, this would result eventually in a digital transformation of that television watching experience.

The launch of digital terrestrial television of course changed the watching experience now we had access to lots of channels and the EPG (electronic programme guide) would enhance that experience. Though for some it meant more time scrolling through those channels.

What really transformed the watching experience was when digital technologies detached that experience from the physical television.

Back in the early 2000s I had a Compaq iPAQ handheld PDA with a jacket that could be used with a CompactFlash memory card. I do remember, as an experiment, ripping a DVD, compressing the resulting video file, copying it over to a 1GB IBM MicroDrive CF memory card and watching video on the move. It was challenging to do and not something the average consumer would do. However the concept was there of watching television on a small screen, regardless of my location.

There followed the development of small handheld devices, be they phones or tablets, which now have sufficient processing power to deliver high quality video. Also video content is now much more easily available. Connectivity has changed as well, with 4G (and now 5G) allowed high quality video to be streamed over the internet regardless of location.

Mobile video
Image by Claudia Dewald from Pixabay

Suddenly we could watch television when we wanted, where we wanted and how we wanted. Services exploited this transformation of the television watching experience, we saw subscription services such as Netflix, on-demand services such as BBC iPlayer, downloaded content from services such as Google Play or iTunes really enabled and allowed people to have a very different television watching experience. In many ways the digital transformation of watching television has resulted in box sets being available (as opposed to releasing an episode weekly, though that still happens) . We’ve also seen a huge explosion in short videos, through services such as YouTube and TikTok.

One example of the impact of this transformation of the watching experience is how television episodes are no longer constrained by the artificial construct of broadcast television. Most US series, until recently, episodes were 45 minutes long, so with adverts they would fit into the one hour slot allocated to them. With services such as Netflix and on demand services, the removal of the constraint has enabled television production to produce episodes of different lengths to suit the story for that episode, some will be longer and some will be shorter. The fourth season of Stranger Things is a case in point, only one episode is an hour, five are between 74 and 78 minutes and the finale is one hour 38 minutes. Okay these are all longer…

So to remind us, when we look at digital transformation, it becomes obvious that focusing on the hardware or technology is actually quite limiting. So when looking at the digital transformation of education, we really want to focus on the transformation of education and how digital can enable and enhance that transformation.